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Abstract: We discuss some issues that arise in the implementation of numerical algo- 
rithms for computational fluid dynamics (CFD) on multiprocessor systems such as hyper- 
cubes. We identify several important kernel numerical algorithms from CFD that map 
well onto the hypercube architecture. We emphasize the importance of considering the 
optimal mapping for a collection of kernel algorithms used in an application program 
rather than just on individual optimal mappings. Several examples illustrating the trade- 
offs between rearranging data to fit a particular kernel algorithm and using suboptimal 
mappings will be discussed. 

1. Introduction 

The field of computational fluid dynamics (CFD) has been a primary motivating force 
behind the recent interest in parallel computing. CFD demands lots of compute power, 
primarily due to the presence of wide scales of physical phenomenon that need to be 
modelled. Since CFD applications are already stretching the limits of sequential process- 
ing, many people believe that the computing power needed for major advances in CFD 
can only be delivered by parallel processing. 

This trend has already been recognized for many years at CFD research centers such as 
the NASA Ames Research Center, which developed one of the earliest parallel comput- 
ers, the U I A V  IV. Recent developments there include the NAS project (Numerical 
Aerodynamics Simulation) one of whose goals is to bring the most powerful supercom- 
puter at any given time to applications in CFD. Currently, it operates a 4 processor Cray 
2 system. Looking into the future, NAS sees computers with massive parallelism. With 
this trend, the interplay between architecture and algorithms becomes more important. 
For this reason, the Research Institute for Advanced Computer Science (RIACS) has ini- 
tiated a research program to bridge the gap. Efforts so far include studies of CFD on the 
MPP parallel computer and the Intel iPSC hypercube multiprocessor computer by John 
Bruno [2,3] and a workshop headed by Jack Dennis on the use of data flow architectures 
in ~m [i]. 

This article describes a preliminary study on the use of hypercubes to CFD. Our 
approach here is to identify and study kernel algorithms in CFD in detail in order to pro- 
vide a scientific basis for implementation into future production codes. A main issue we 
study is the optimization of load balancing and communication cost by careful mapping 
of data (domain). We put a special emphasis on selecting optimal mappings for a collec- 
tion of algorithms used in a typical application rather than on mappings for individual 
kernels. We also study the tradeoffs between the cost of using a suboptimal mapping and 
that of rearranging the data to obtain an optimal mapping. Several examples from CFD 
will be used to illustrate our points. 

2. Kernel Algorithms in CFD 

CFD can be classified by the various versions of the Navier Stokes equations that it 
solves: e.g. incompressible flows, compressible flows, transonic flows, turbulence model- 
ling etc. Due to the different mathematical characteristics of the governing equations, 
these variants usually require different computational algorithms for their solutions. In 



Hypercube CFD 2 

this section, we identify some of the commonly used kernel algorithms in each case. 

First of all, most methods require some sort of nearest neighbor mesh ("-mesh) compu- 
tations defined by the discretization stencil, such as for the computation of the residual 
and in relaxation methods. 

In compressible flows, alternating direction implicit methods (ADI) are popular. These 
methods require the solution of block tridiagonal linear systems in each coordinate direc- 
tion at each time step. A representative code is ARC3D developed at NASA Ames [ 191. 

In incompressible flow, there is usually a Poisson equation to be solved at each time step 
(for the pressure in the primitive variable formulation and for the stream function in the 
stream function vorticity formulation), which often consumes most of the computation 
time. Thus a fast Poisson solver is an important kernel for these applications. 

Spectral methods are becoming more widely used in CFD. In turbulence modelling [ 181, 
they are particularly predominant. Combined with their applications to other kernels 
such as fast Poisson solvers, this makes the fast Fourier transform (FFT) an extremely 
important kernel for CFD. 

Transonic flows are usually modelled by equations which have different type (hyperbolic 
or elliptic) in different regions of the computational domain. Since the location of these 
type transitions depends on the solution itself, the discretization may change during the 
solution procedure. This feature leads to iterative methods (usually relaxation methods) 
which makes successive sweeps across the domain to update the solution. These iterative 
methods are often accelerated by techniques such as multigrid and preconditioned conju- 
gate gradient methods, which are finding increasing application in other areas of CFD as 
well. The most well-known codes in this area are perhaps the series of codes starting 
from FL052 by A. Jameson [ 131. Recent versions of this code use the AD1 method with 
multigrid acceleration. 

3. Mapping of Algorithms to Hypercube Architecture 

Part of the reason for the popularity of the hypercube architecture is the fact that many 
other topologies, such as meshes, trees, pyramids and butterflies, are embeddable in the 
hypercube topology [21]. By this we mean the graphs representing these other topolo- 
gies can be mapped onto the binary n-cube graph with small dilation (the relative 
increase in the distance between vertices) and expansion (the relative increase in the total 
number of vertices) [20]. In practice, this implies that computations involving data flow 
graphs taking the form of the previously mentioned topologies can be carried out with 
minimum communication overheads on binary n-cube computers. In this section, we 
shall briefly discuss the problem of mapping some of the kernel algorithms in CFD 
identified in the last section onto the hypercube. These include FFT. (butterfly), cyclic 
reduction (tree), multigrid (pyramid) and computations on "-meshes. 
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3.1. FFT 

We shall restrict our discussions to the radix-2 FFT algorithm. The data flow graph for 
the FFT is usually referred to as the "butterfly". Let the array elements be x j  , where the 
index j ranges from 0 to 2d-1. These array elements are updated at each of d stages of 
the computatian. At the i-th stage of the computation, the array element with index j 
must communicate with another element with index k , whose binary representation 
differs from that of j in the i-th most significant position. On a hypercube, the natural 
mapping is to map X j  to node number j of the cube [9]. To be mathematically precise, 
let M tl + N be the class of mapping functions, where I denotes the set of indices of the 
array elements and N the set of node numbers of the hypercube. Then the FFI' mapping 
f E M is given by 

With this mapping, it is easy to see that at every stage of the computation, the necessary 
communication will be between neighboring nodes. Moreover, all such communications 
at a given stage can be carried out in parallel. Each stage can be viewed as "collapsing" 
the hypercube in one of its coordinates. In fact, the hypercube is isomorphic to the 
butterlly of the same dimension. 

Note that after the completion of the forward transform, the data elements are not 
arranged in the natural order. Rather, they are in what is known as bit-reversed order. 
This is unimportant if the inverse transform of the data array is to be computed next, 
perhaps after some computations on the transformed array itself, which is typical in many 
applications. If needed, the array elements can be permuted into natural order in d steps 
with only nearest neighbor communication [23]. 

3.2. "Mesh 

* Annthpr --*"--"A COF~EKX d a 2  fb~ p ~ h  is the n e ~ ~ ~ t  fieighboi p.TJ> i i ~ s h ,  which ~ ~ i i i i  

naturally in the solution of partial differential equations. We shall limit our discussion 
here to one dimensional meshes, since higher dimensional meshes can be easily built 
from tensor products of one dimensional ones[7,21]. If the array elements are denoted by 
X j ,  then the NN-mesh graph with the X i ' s  as vertices contains all edges connecting a 
given vertex X j  with its nearest neighbors on the mesh. In one dimension, these are the 
two vertices Xj-1 and X j + l .  (Throughout this paper, all indices are to be taken modulo 
2d, where d is the dimension of the hypercube.) 

It is well-known that the NN-mesh graph with 2d vertices can be mapped into a d -  
dimensional hypercube with no dilation or expansion via Gray codes. The natural map- 
ping rn EM for the NN-mesh to a d -dimensional hypercube is 

where g j  is the j-th member of a d-dimensional Gray code. It is important to note that 
Gray codes are not unique but any d-dimensional Gray code will work here. 
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3.3. Multigrid 

Multigrid algorithms can be viewed as methods for accelerating relaxation methods by 
performing extra iterations on a hierarchy of coarser grids in addition to the fine grid on 
which the solution is sought. On the finest grid, only NN-mesh computations are per- 
formed and therefore the tensor product Gray code mapping discussed in the last section 
can be used effectively. On the coarser grids, however, NN-mesh computations require 
communication between grid points that are increasingly becoming farther apart. Thus a 
little bit more care must be used to map the grid onto the hypercube so that coarse grid 
communications can be made efficient. In [6] ,  it is shown that, if the grid coarsening fac- 
tor is 2, then by using a special Gray code (namely the binary reflected Gray code 
(BRGC)) to map the finest grid to the hypercube, all coarse grid communications are 
exactly distance 2 apart (which is optimal), independent of the size of the grid or that of 
the hypercube. We emphasize that this is a special property of the BRGC and does not 
hold for many other Gray codes. Thus, the same mapping which is optimal for NN- 
meshes is also optimal for multigrid. 

3.4. Cyclic Reduction 

Odd Even Cyclic Reduction (CR) is one of the most efficient parallel algorithm for solv- 
ing tridiagonal systems [ 121. In the first stage of the algorithm, the odd numbered equa- 
tions are used to eliminate the odd numbered unknowns in the neighboring even num- 
bered equations, resulting in a new tridiagonal system of half the original size governing 
only the even numbered unknowns. Subsequent stages are recursive applications of the 
same principle. If the size of the system n is a power of 2, this leads to one equation in 
one unknown after log2n stages, which can be solved trivially. This is followed by a 
backsolving phase reversing the data flow of the forward elimination phase. The com- 
munication requirement is similar to the multigrid algorithm: starting from NN-mesh at 
the first stage, communications are between nodes that are at increasing powers of 2 
apart. Therefore, it is easy to see that if the BRGC is used to map the equations to the 
hypercube, then all communications in subsequent stages are exactly at distance 2 apart 
[ 151, which is optimal. 

4. Suboptimal Mappings Versus Data Rearrangement 

In the last section, we saw that the optimal mapping for many kernel algorithms in CFD 
are easy to define and implement. However, what is often not appreciated is the fact that 
different algorithms require different mappings. Moreover, in applications where the 
same data set must be operated on by more than one algorithm, situations may arise 
where the optimal mappings for the individual algorithms are not compatible with one 
another. What is ideal for one could be disastrous for the others. In such situations, we 
have two alternatives: rearrange the data between algorithms or use only one mapping 
which may be suboptimal for some of the algorithms. The suboptimality could be either 
due to communication delays or to imperfect load balancing. The tradeoff between these 
two approaches depends on the relative frequency each algorithm in the collection is exe- 
cuted. In this section, we shall illustrate these issues by several examples in CFD. 



Hypercube CFD 5 

4.1. The Incompatibility Of the FFT and the NN-Mesh Mappings 

The most natural mapping for the FFT algorithm, namely f in equation (I), turns out to 
be inefficient for NN-mesh computations. If the data array xj is mapped onto the hyper- 
cube using the FFT mapping f, then a nearest neighbor computation on the same data 
array requires communication over a distance d (equal to the diameter of the hypercube) 
for some nodes, e.g. between node 2d-1-1 and node 2d-1. Thus, as far as the NN-mesh 
computation is concerned, the FFT mapping f is the worst possible mapping. For higher 
dimensional hypercubes, this may cause a significant reduction in the efficiency of algo- 
rithms using the nearest neighbor data flow graph. 

On the other hand, the NN-mesh mapping rn in equation (2) can be made suitable for 
FFI' computations. To see this, note that the FFT butterfly involves pairs of array ele- 
ments separated by strides of diminishing powers of 2 and thus if the array elements are 
mapped to the hypercube using a BRGC, then the communications occur between nodes 
at most a distance two apart. This is optimal because a distance of one would create a 
cycle of odd length in the hypercube (the power of 2 stride plus the nearest neighbor con- 
nection), which is impossible [21]. 

Alternatively, one can consider rearranging the data before the execution of each algo- 
rithm according to the most natwal mapping for that algorithm, especially if the algo- 
rithm is to be executed many times. It turns out that one can convert from a BRGC NN- 
mesh mapping to a FFT mapping (and vice versa) with d-1 nearest neighbor exchanges 
15,151, which is comparable with the communication cost of one FFT computation. Thus 
if many FE;Ts are to be performed, then it may pay to carry out the conversion to the 
optimal FFI' mapping. For a detailed analysis of which mapping is best for a particular 
application and the tradeoffs between rearranging data and using a suboptimal mapping, 
the reader is referred to [5]. 

Applications employing both the FFT and the NN-mesh data flow graphs are very corn- 
mzr? i~ CFD. A i t n i t  6ifferz;;ze discrctizition of the Navier Stokes equation often pro- 
duces a nearest neighbor stencil. Thus the "-mesh mapping is natural for computation 
of residuals. On the other hand, if a spectral method or a fast Poisson solver is used to 
solve the difference equations, then the FFT mapping is called for. 

43. The Parallel Exchange Multigrid Algorithm 

Sometimes it may be beneficial to rearrange data even between different parts of the 
same algorithm. In the parallel implementation of multigrid methods on hypercubes as 
described in Section 3.3, by using a BRGC NN-mesh mapping of the finest grid, com- 
munication on coarser grids are at distance exactly 2 apart. If many NN-mesh operations 
are to be performed on a coarse grid, then one can consider rearranging the data on it to 
reduce this distance to 1. In [6], it is shown how this can be achieved by a simple 
exchange communication between certain neighboring nodes on the fine grid before 
starting computations on the coarse grid. A similar exchange must be used when coming 
back from a coarse grid to a fine grid. This remapping thus pays if more than 2 smooth- 
ing sweeps are perfoxmed on the coarse grid. See [8] for more details on the implemen- 
tation of this algorithm. 
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4.3. Transpose in AD1 Methods 

Another example of the tradeoff between using a suboptimal mapping and rearranging 
data to an optimal mapping is in the parallel implementation of Alternating Direction 
Implicit Methods (ADI) on hypercubes [16]. We shall restrict our discussion to two 
dimension regions. Each iteration of the AD1 method consists of solving independent tri- 
diagonal systems on grid lines in each of the two coordinate directions. If the grid is par- 
titioned into groups of grid lines along one coordinate direction and each group mapped 
onto the hypercube according to the BRGC, then the solution of the tridiagonal systems 
in this chosen direction are all within the same processor and requires no communication. 
The solves in the other direction can be solved by the cyclic reduction algorithm 
described in Section 3.4, with communication between processors at distance 2 apart 
after the first reduction stage. By a similar exchange operation as in the multigrid algo- 
rithm described earlier in Section 4.2, this distance can be reduced to one [15]. By a 
more costly transpose operation of the grid, this distance can be further reduced to zero 
(solves within the same processor). Which alternative is best is still an open research 
problem and probably depends on the sizes of the grid and the hypercube and the relative 
cost of computation and communication [ 11,17,22]. 

4.4. Load Balancing in Parallel FFT 

The previous examples show situations where remapping can reduce the communication 
cost of an algorithm. Sometimes, remapping can improve load balancing. Consider the 
parallel implementation of the Gentleman-Sande version of the FFI' [24]. The original 
sequence is divided into contiguous blocks and each block mapped onto the processors of 
the hypercube using the FFT mapping f discussed earlier. At each stage, two kinds of 
computations must be performed: (1)  the sum of two intermediate transformed values 
and (2) their difference, multiplied by appropriate powers of certain roots of unity. In the 
early stages, these two computations are performed on neighboring processors requiring 
communication whereas in the latter stages, they are performed in the same processor 
requiring no communication. In [ 101, it is pointed out that in the early stages the compu- 
tations are not perfectly balanced: some processors must compute (or look up) the roots 
of unity and perform a complex multiplication whereas others do not. This imbalance 
can be eliminated by permuting the data at every stage so that only local FFTs of the 
same size are performed in each processor. For more details, the reader is referred to 
[lo]. 

4.5. Particle in Cell Methods 

Another example of remapping to improve load balancing is in certain parallel imple- 
mentation of particle in cell methods [4]. These methods typically consists of two stages: 
the solution of a Poisson equation for the field on a regular grid and then "particle push- 
ing" of the individual particles. The Poisson equation is usually handled by a "fast solver" 
which prefers a regular mapping, e.g. the tensor product BRGC NN-mesh mapping. 
However, if the particles are distributed nonuniformly in the computational domain, then 
the particle pushing phase prefers a nonregular mapping which would produce better load 
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balancing in the sense of having roughly the same number of particles in each processor. 
Again the tradeoff is between the cost of remapping and that of using a suboptimal map- 
ping. 

5. Conchding Remarks 

A typical CFD program contains several kernel algorithms working on the same data. 
One of the main purposes of this article is to emphasize the need to go beyond studying 
the optimal implementation of the individual algorithms and look at the whole collection 
as a whole. The reason is simply that what is best for one algorithm may not be optimal 
for the others. Very often, a remapping of the data to perfectly suit an algorithm should 
be considered. The tradeoff is between the cost of the remapping and the benefits of 
reduced communication and better load balancing. We have shown in this article several 
such examples arising naturally in CFD applications. The optimal choice of mapping 
depends on many factors, such as the frequency the algorithms are to be executed and the 
ratio of the arithmetic speed to the communication speed. 
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